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Disorder-induced genetic divergence: A Monte Carlo study
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We present a Monte Carlo simulation of a system composed of several populations, each living in a possibly
different habitat. We show the influence of landscape disorder on the genetic pool of finite populations. We
demonstrate that a strongly disordered environment generates an increase of the genetic distance between the
populations on identical island. The distance becomes permanent for infinitely long times. On the contrary,
landscapes with weak disorder offer only a temporarily allelic divergence which vanishes in the long time
limit. Similarities between these phenomena and the well-known first-order phase transitions in the thermody-
namics are analyzed.
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[. INTRODUCTION new species is the result of a complicated interaction be-
tween the modification of the genotypes due to mutations
Island problems play an important role in understandingand the natural selection. The appearance of mutations is a
biological evolution. Actually, various questions related topure biological property, which is only weakly related to the
adaptation, reproduction, biological transmission, and naturdPcal environment. On the other hand, the environment fa-
selection can be studied using island concepts. Usually, on¢ors certain phenotypes which have a higher survival chance.
takes into account that an island is in contact with the mainConsider now a large territory which can be decomposed
land. The underlying dynamics of colonization, migration, into several smaller ones, with possibly different living con-
and extinction lead to a biological equilibrium depending onditions. If the differences are small the subpopulations occu-
various control parameters, e.g., the island size and the digying the territories evolve in a coherent manner. Different
tance to the mainlanfl—5]. The predictions of such models territories may lead to different evolutionary patterns. A ho-
have been verified for a wide range of taxa including birdsmogeneous environment leads to a systematic drift of the
[6,7], insects[8], and plant§9]. The decisive contributions genetic composition, but the effects of a heterogeneous en-
to the stabilization of the biological equilibrium arise from Vironment may be locally different. Hence, a heterogeneous
the interplay between colonization, migration, and extinctionlandscape represents a further random quantity apart from
[10]. The importance of these dynamical factors has bee#h€ above mentioned mutations.
confirmed in several experimental systefi$—14. We analyze the evolution of populations on complete iso-
Obviously, the biological equilibrium is not a real equilib- !ated islands, i.e., both the island-mainland and the island-
rium but a stationary state in the sense of a statistical intefsland contacts will be interrupted after the initial coloniza-
pretation. This can be verified by an artificial interruption of tion. A realistic example is the occupation of similar islands
the colonization and migration currents. Such a change cotvhich are temporary within easy reach over landbridges. The
responds to a transition from a canonical systerhich is in ~ immigrated populations are separated after sinking of the
contact with a thermal bath, i.e., the mainlatal a microca- bridges. In consideration of the initial question we assume
nonical systenfwhich is completely isolatedThe dynamics ~that all islands have identical random landscapes and the
of the evolution are different in the two cases, in contrast tdhitial distributions of the islands are also identical. We shall
an equilibrium system, where the dynamics are essentiall?tUdy two problems. In one, the islands are identical but the
the same with the exception of possible boundary effectggenetic pools of the colonists are different and in the second
Also a partial change of the influx currents changes the evoone also the habitats are different. _
lution, e.g., in absence of further colonization, species diver- We demonstrate, on the base of Monte C4NC) simu-
sity dynamics on islands are controlled only by extinction, adation, that for strongly disordered environments an increase
with mammals on Great Basin mountaif&. Furthermore, of the genetic distance between the populations on different
the case of a complete isolation of the islands will lead to'slands occurs which becomes permanent also for infinite
speciation between the island and the mainlgri and also  long times. Landscapes that do not differ much will generate
between islands in an archipelafis). only a temporarily allelic divergence which vanishes in the
Both island-island models and mainland-island modeldong time limit.
are used also for studies of premating isolati/d7”—-19.

Here, the boundary conditions emerging from speciation by Il. MODEL
vicariance and peripheral isolation correspond to a symmet- '
ric and one way migration, respectivelg0]. How can we model the biological evolution of species in

In this paper we shall discuss another question: what iterms of a Monte Carlo simulation? The first problem is the
the influence of the island landscafiee, living condition$  definition of the habitat. The general shape of the island is
on the speciation? It can be assumed that the formation dfrelevant, but the area is important because it determines the
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maximum number of inhabitani{she so-called carrying ca- not have a mathematical standard symbol, but is sometimes
pacity of the environment Each island consists of territo- denoted as/.)
ries, and each territory can be occupied at the most by one -

animal of the population. Therefore, we map the islands on a (eiloy=F(e{"\/a),
square lattice of sizk. Each lattice cell corresponds now to o

a territory and the total number of territories per island is with f(T)=1 and f(F)=—1.
N=L2

Therefore, the fitness of an animal is given By=(1
+(®;|S))/2 with the scalar product (®;|S)
=G 132 (¢ of). Obviously, the fitness is restricted by

The outward appearance of an animal is characterized by<A;<1. Fitness and the actual life time of an animal
a set of properties which are defined by the animal’s phenodetermine the state of the animal. As in many biological
type. The phenotype of an animal in thié territory is de-  models(see e.g.[21]) we assume that the rate of survival is
scribed by aG dimensional vecto;={¢!,¢?, ... ¢"}. given by an exponential distribution function, i.e., the chance
Each component of this vector corresponds to a propertyof survival of an individual is defined by
which is eithere{=T (true) or not ¢{*=F (false. Further-
more, ¢{"=T may correspond to an advantageous property. P-:exp[ B Ti]
Such a property becomes dominant in the course of the bio- :
logical transmission.

To quantify the reproduction of animals, a genotype isB ™~ can be interpreted as the averaged age of the animals. If
assigned to each individual. The genotype of an animal a&n individual dies, the corresponding territory becomes va-
positioni consists of two sequencdd ; and R; , each of cant and can be occupied by a new animal.
lengthG. An element of a sequence can be either tijeor
false (F). The phenotype of the animal follows from both B preparation of island landscapes and initial populations
sequences using the logicaR operation ¢{'=R{"}\/R",,

A. Numerical rules

Now we turn back to the original problem. We assume

. a . H o a g
8., ¢ IS true if and only if at Ieast' one @&, and R‘vz. 'S that the genetic pool of the initial colonists has been formed
true. This rule represents the dominance¢gft=T against on the mainland by a certain phenotype, nameh’

¢i"=F. The reproduction and therefore the biological trans-_ T,T, ....T}. This phenotype corresponds to the best en-
missi.on takes placg d_u_e to simplified gengti_c prinpiples. INjironment vectorS'={T,T, ... T} which may be relevant
the first step two individuals at the positionsand j are ¢4y the mainland. Furthermore, we have to take into account
chosen randomly. These animals are denoted as parents. Tgy; the islands are identical, but the landscapes of the islands
distanceli —j| on the square lattice between both parentsyeyiate from the optimum environment vec&t by random
should not exceed the maximum distangg,. The genetic  peyrbations. We consider two special cases. On one hand,

sequences of the parents must now be prepared for reproduge have spatially homogeneous landscapes, i.e., the property
tion. Therefore, the genotype sequences are split into tWQectors of all territories are equivaler$, =S,= ...Sy

subgequences of Iengrt[p %nde—rpn, rgspnectively, e, we g0 Therefore, we obtaii(o®) =(f(c%)), where the av-
obtain - R 1Ri o) — ([RI1R7L "LIRZR, 7). Here the  gra46 is performed over all territories. The functiomaps
lengthm is chosen randomly between 0 a@d These sub- |qgical observables on numerical quantitid€T)=1 and
sequences are recombined to two new sequeUE@Betes  ¢(Fy=_ 1 as explained above. On the other hand, we have
Ri1=[RMR ™ andR; ,=[R,R® ™). One of these new to deal with completely heterogeneous landscapes, i.e., the
sequences is chosen randomly and combined with a gameterritories characterized by different property vectors. There-
prepared by a similar procedure on the base of the genotyere, we use two parameters for characterizing the two types
of the other parent. These two gametes form the genotype @f disorder of the landscapes:
an offspring. This procedure is commonly called recombina-
tion. If more than one offspring is created, the whole proce-
dure is repeated again. The maximum number of offspring is Ao
ny, but we have to consider that a new animal has to find a
vacant territory. Therefore, only if a vacancy exists in a re- G G 2
gion of radiusr ,,, around the average parent position, the and A= — 2 (f(o®)— i 2 fFeN| . @
offspring has a chance of survival. G a1

The natural selection of animals is determined by the phe-
notype. The local character of a territdrynay be defined by We obtainAy=0 in the case of a pure homogenous disorder,
the environment VeCtOSi={a'il,a'i2, . ,a'iG} (with o*=T whereas the second quantity converges asymptotically to
andaiﬁ= F, respectively, which defines the optimal proper- zero for a pure heterogeneous disorder,limA=0. For a
ties for survival of the animal which has occupied this terri-parametrization of the disorder we use the following proce-
tory. The product of a component of the phenotype vedtor dure. We start from th&-dimensional reference vect@
with a component of the local environment vec®ris de- ={T,T, ... T} and change randomly a fraction @G com-
fined using the logical procedus@r. (This procedure does ponentsT—F. The obtained vecto®’ is now used as pro-

G

1 a a 2
G & ([f(e)=(f(d)]%) D

(IR

a=1
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visional property vector of each territory, i.&,=S'. With-  sure for the mean square genetic distance between the popu-
out further changes, the vect® defines a completely lations on two islands with disordered landscapes:
homogeneous landscape. To obtain a heterogeneous land- 1 8

scape, we change again with the probabiktyeach compo- _ = a _ @ 2

nent of the vector§' , independently of the logical character 20 G Zl [0 ={feH W) 3

of the components, i.eT—F andF—T. The result is a
random set of property vectol§, which are used to de-
scribe the landscape of the islands. Hence, we obtain

Another quantity is the so-called overlap function

1 G
pitnio) and Fetu(iemio2a? Onernd)= 5 2, (&N D)D)z @)
o~ a4K(1l—K =4qaulLi—um —Z£K).

: S . which describes similarity of the respective phenotypes. It
The genetic structure of the population is characterized by, o\ he remarked, that this quantity contains similar infor-

tsr:ae uzglnggg %tfy ?r?:j&)llgr?igtsigr.e\/\clgr;eﬂ;g? trhaar:dtgzlImt;tllizltnbmatlon as the Edwards—Anderson order paramgter23
d N pietely randomly which describes the thermodynamic similarity between non-
uted, but the initial distributions of characteristics of all is-

lands are identical ergodic spin glass stat€23]. Obviously, there is an interest-
' ing analogy between the biological evolution of isolated
populations and the relaxation of spin glasses into a stable

C. Numerical simulations stationary state. This similarity will be analyzed in detail in
In the MC simulations we compare the time evolution of the discussion. . o _
100 pairs of identical islands of si2¢=40x 40. Each indi- Furthermore, we determine the mean misfit of adaptation
vidual is characterized by its genotype of lendi 20,

2
2 (Fle) (W) —2(f(e™)

hence it has two gene sequences of 20 components. In gen- (1)(t)_
eral, these arbitrary settings differ from reality, but the main
messages of the simulations are also valid for longer se- 6 2
guences and for a large number of territories. Furthermore 1 -
we choose the radius,;,=5 and the maximum number of Yol Z Z (Fle) (M)
offspringng=3
After generation of the initial distribution, the originally —(1-2u)(1—2k) (5)
identical populations diverge due to the random effects in the - .
biological transmission, the life time, and the occupation of2Nd the mean square misfit of adaptation
vacant territorieggenetic drifi. The combination of biologi-
cal transmission and natural selection emphasizes a certain M(Z)(t)— [ E [{(F(e) ()i +{F(@™) (1))
phenotype. This phenotype is well defined in the case of
vanishing disorder: individuals withb={T,T, ... T} have
supplanted all other individuals after a sufficiently long evo- ) 2 W} ’ (6)
lution time. Thus, the divergence of the genetic distance a=1
shows a crossover to a convergence and at sufficiently long . . _
times we find a vanishingly small difference. ‘%h'Ch is related td3) and(4) via
The situation becomes more complicated in the case of 1
disordered island landscapes. Here, it can be expected that M®@)(t)= 56(t)+over,a;{t)—(1—2;()2. (7
the divergence of the genetic distance becomes finite also at
sufficiently long times, in spite of identical landscapes and
identical initial distributions due to genetic drift and random-
ness introduced by genetic shuffling in th process of recom- First, we analyze the adaptation of the populations to the
bination. landscape of the islands. Therefore, we study the quantities
We use the following quantity for the characterization of M®)(t) and M(?)(t). The initial mean misfit of adaptation
the difference between the phenotypes at both islands of @an be determined immediately, beca(fgy®)(0))= 1/2 is

Ill. DISCUSSION

given island pair: valid for all populations. Hence, we obtam()(0)= —1/2
L +2u+2k—4uk. The mean misfit of adaptatiol ()(t)
Sult)= — F o () — (F(0%)(t 2 converges for long times to another asymptotic value, which
(V) G Z1 [ ) =T eDH D)) depends also on the parameterand x defining the disorder

of the island landscape. The misfit vanishes in the case of a
The indices andk indicate the number of the island. Obvi- vanishing local disorder at the islands=0), i.e., the re-
ously, this quantity depends on the actual landscape of theaining phenotype shows an optimal adaptation to the island
islands. Therefore, we have to average over all possible rdandscape. This phenomenon can be observed for globally
alizations of the landscape disorder, defined by the abovdisordered islands, i.e., far=0 and I=u=0. It should be
introduced parametera and k. This ensemble average is remarked, that this statement is also valid £e¢ 1, because
marked by an overline. Thus we obtain the following mea-the above mentioned construction changes the character of

041907-3



MICHAEL SCHULZ AND ANDRZEJ PHEKALSKI PHYSICAL REVIEW E 66, 041907 (2002

1.5 0.9
p=0
1.0 -
0.5 FIG. 1. M®)(t) as a function
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all properties in all territories. We may therefore say that ainitial value M(*)(0) to the final value occurs fok=1/2.
weak disorder is related ta—0 and k—1, whereas a Here, we expect a decay from the initial valig(®(0)
strong disorder occurs fok=1/2. Another is the situation =1/2 toM)()=0. This statement is correct if we realize
for nonvanishing local disorder. Obviously, a finite misfit re- the average, over all possible initial distributions of the geno-
mains after an infinitely long evolution time also, which can-types and over all disordered landscapes corresponding to
not be eliminated by the action of the natural selection, se&=1/2 and a fixed value of.. But if we consider only one
Figs.[1,2]. The surprising result arises far=1/2. The final  special landscape witk=1/2 and fixedu and one initial
mean misfit of adaptatiohl (*)(=) increases with increasing configuration then we arrive at a nonvanishing value for
« for k<1/2 and then follows an abrupt dropat=1/2, see  M1)(x). If we repeat the numerical procedure with another
Fig. 3. Finally, the misfit approaches again the value 0 fodandscape characterized again by the same disorder param-
x—1. The jump atx=1/2 indicates a behavior similar to a etersk=1/2 andu or with another initial configuration, we
first-order phase transitiof24] induced by the static local obtain another value fdvl(*)(). The quantityM ()(«) ap-
disorder of the island landscape. proaches zero, not until we perform the average over a large
A characteristic slowing down of the relaxation from the set of landscapes and initial configurations. This is the rea-

121 0.0
p=0.8
1.0 4
0.8
0-6 (l) .
] FIG. 2. M'¥/(t) as a function
0ad T e of evolution timet for the global
N e . disorder parametern=0.8 and
g 0.2- various local disorder parameters
= ° ] k=0,0.1,0.2...,0.9. The arrow
0.0 shows in the direction of increas-
) 1 o' ing . The dotted line corresponds
_0 2 o : to k= 05
-0.4 4
-0.6 T | T T
10° 10’ 10° 10° 10
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son, that the numerically determined value MfY)(t— ) dependence on the disorder parameter
shows a small deviation from the expected reulf)(=) The origin of the misfit of adaptation becomes more clear
=0 due to the finite number of numerical realization. Thisafter a discussion of the mean square misfi®)(t). The
mismatch disappears with increasing number of considereihitial value of this quantity is given byM(?)(0)=—23/4
landscapes and initial distributions of genotypes. We con-+4x—4«?, i.e., it is independent from the global disorder
clude, thatM(})(=) is not a self-averaging quantity at least parametep. This behavior reflects also a symmetry defined
close tok=1/2. Far from this region, each landscape withby the construction of the disorder. Configurations related to
fixed k and u produces the same value dM)(x) apart the local,x, and globalu, disorder parameters are equiva-
from some very rare events. lent to configurations related to the pair{%,1—u). Be-

We reduce the misfit of adaptation by mappiigY(t)  causeM(?)(0) is independent fromu, it must be invariant
— MO (tmad VIMD0) - MVt ]—MO(t) with the maxi- against a change—1—«, see also Figs]5, 6]. Also the
mum simulation timet ... Figure 4 shows that the reduced final valuesM()(=) do not depend om.. Obviously, one
guantity can be described very well by an exponential decagnd only one phenotype dominates a given island after a
exp[—t/7(w)}. The relaxation timer(u) shows only a weak sufficiently long evolution time. This means that the average

100-_

10" 4 FIG. 4. Half logarithmic
] plot of the reduced misfit
of adaption for x=0.5 and
various order parametersu
=0,0.05,0.1...,0.95,1.0. The
decay of all these functions shows

an exponential behavior.

M7(t)

1074

T T T T T 1
0 5000 10000 15000
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0.1/0.9 FIG. 5 M_ (t) as a function
of evolution timet for the global
0.25 . .
o disorder parameter =0 and vari-
&; ] ous local disorder parameters
s 0004 0.0 =0,0.1,0.2...,0.9. The dashed
) curves correspond ta<0.5, the
-0.25 full curves represenk>0.5. The
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-0.50 =0.5.
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of each property approaches the valfdo®)(*))==1. modynamic systems, which have no equilibrium below a
Consequently, we obtairVI(®(e)=1—(1—2«k)?=4x(1 critical temperature. In other words, a spin glass shows more
— k), see Fig. 7. It seems, that these propergi€sof the  than one thermodynamic ground state in opposition to a
phenotype become dominant, which are favored by the isusual thermodynamic system which has only one ground
land landscape: if the majority of territories has a landscapetate. After cooling down of a spin glass, the influence of the
property S*=T (or F), then the corresponding phenotype random thermodynamic fluctuations and the initial condi-
property of all animals becomeg=T (or F) in the long tions determines the final ground state. But if the system has
time limit. The only critical situation occurs fot=1/2, i.e., reached one of these ground states, a change to another
for the case when half of the territories have the propertyyround state is forbidden below the critical temperature and
S’=T and the other half haS*=F. Here, the future evolu- for a macroscopidinfinite large system. The thermody-
tion is open and a behavior similar to a phase transition canamic behavior of a spin glass can be characterized by the
be expected again. Edwards-Anderson order parameter, which compares two
We analyze now the order parametei®(t) and replicas, i.e., two identical thermodynamical systems. If both
O overiadt) for a better understanding of the biological evolu- replicas are in the same ground state, the order parameter
tion at a strong disorder, especially for the casel/2. Both  becomes 1, otherwise it has a smaller value. This situation is
order parameters compare the evolution at two identical issomparable with the biological evolution at two identical
lands and they are modifications of similar parameters deislands. If the order paramet@ ;e ,{t—=) becomes 1,
scribing the behavior of spin glasses. These glasses are théhe phenotypes at both island are identical. In other words,

1.00 <
0.75 4 n=0.35
0.50 _
FIG. 6. M)(t) as a function
0.25 0.5 of evolution timet for the global
— disorder parametep=0.35 and
= 1 various local disorder parameters
s 0.0 k=0,0.1,0.2. ..,0.9. The dashed
curves correspond ta<0.5, the
-0.25 1 full curves represenk>0.5. The
dotted line corresponds tox
-0.50 =0.5.
-0.75
v LR | v WA | v v LA | v MR |
10° 10’ 10° 10° 10*
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there is a complete overlap between the populations at bottler regime. The existence of an incomplete overlap not only
islands. In case of an incomplete overlén,eqaft— ) for k=1/2 is a finite size effed25]. Note, that with increas-
<1, the final populations are different. An analogous behaving island size the interval with ¢ ,{t— ) # 1 decreases
ior shows the order parametéf (t), which vanishes for a and it remains only a singularity at=1/2 for infinite large
complete overlap, whereas a finite value indicates a differislands.
ence between the phenotypes of the island populations. A A similar behavior shows the order parameter
similar function, measuring the overlap of a given and stored5® (t) which vanishes for weak disorder in the long
patterns, has been introduced in the theory of neural netime limit t—~. A relatively sharp peaks® (t—x»)#0
works, see e.g., Ref26]. occurs only fork=1/2, see Fig. 9. Hence, a weak disorder
Figure 8 shows the time evolution &, cqaft) for u is related to a biological identity of the populations at differ-
=0. The order parameter approaches 1 for weak disordeent islands. But we observe a splitting of the biological evo-
i.e., for small values as well as for large values<ofDevia-  lution for k=1/2 (and in case of a finite size effect also
tions can be observed only for a small interval closexto for a small interval around=1/2). This allelic divergence
~0.5 with a maximum fork=1/2, i.e. for the strong disor- is a typical feature of the speciation induced by the disorder

1.1 4
1.0 -
0.9 1
0.8 1
- FIG. 8. Ogenaft) as a func-
0.7 4 tion of evolution timet for the
0 6- global disorder parameten =0
= - and various local disorder param-
V% 0.5 4 eters k=0,0.1,0.2...,0.9. The
K] 0.4 T arrows show in the direction of in-
o ] creasingk. A serious deviation of
0.3 Oovertad ®) = O overaftma)  from
E the value 1 occurs only fo
0.2 =0.5. The smaller deviations for
014 «k=0.4 and 0.6 seems to be finite
4 size effects.
0.0 1
-01 v ML | v ML | v ML | M M | M M
10° 10’ 10° 10° 10
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10"

FIG. 9. §0(t) as a function of
evolution timet for the global dis-
order parametes. = 0.35 and vari-
ous local disorder parameters
=0,0.2...,0.8 and0.5. A finite
value of §0(©)=4560(t, can
be obtained only for «=0.5
+0.2. It can be assumed again,
that all finite values of60 (t;a,
except the value fox=0.5, are
finite size effects. The linear be-
havior betweent=10" and t
=10 indicates a intermediate al-
gebraic law in the time evolution
of 50(1).

10°

10"

s0(t)

10°

. . . The presented numerical Monte Carlo study demonstrates
of the landscape. The smgl_JIarmes m.: 1/2 n both . the infllﬁ)ence of disordered landscapes on th?e/ genetic diver-
order parameters suggest again a behavior similar to a firsfence of species. Obviously, the disorder becomes relevant if
order phase transition. the whole system island-population shows undecided con-
Finally, we present a phase diagram which reflects theigurations, i.e., the future evolution and the final population
above discussed behavior, see Fig. 10. Only a small strigre determined by small random events. This situation takes
along thex=1/2 line offers a considerable finite value of place fork=1/2. Here, the initial population can reach at

50 (t—=). The finite width of the strip is related to the least two different global phenotypes. The question, which
above mentioned finite size effect. final population will be rea”zed, is controlled by a random

FIG. 10. Phase diagram for the
dependence of the final order pa-
rameterd0 (t,,) on the disorder
parametersk and . The small
strip along the 0.4 x<<0.6 repre-
sents value$0 (t.,0>0.25.

0.0 0.2 0.4 0.6 0.8 1.0
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procedure and cannot be defined by a deterministic law. behavior is similar to the dynamics of a first-order phase

However, this global analysis generates new questiongransition. Small domains of a new phase increase in compe-
which should be analyzed in subsequent studies. Especialliition with other phases. Finally, only one phase, the so
we assume that in the first step the dominance of some posalled macrophase, occupies the whole system. Hence, we
sible final phenotypes can be observed in small regions ddrrive at the question, whether this aspect of biological evo-
the island. These regions increase during the biological evdution can be described by the same well-known theories for
lution and at the cost of other regions. Finally, only one ofthermodynamic systemsspinodal separation, nucleation,
the possible phenotypes dominates the whole island. Thiand growth or not.

[1] R.H. Mac Arthur and E.O. Wilson, EvolutioflLawrence, [15] G.H. Adler, Ethol. Ecol. Evol6, 296 (1992.
Kans) 17, 373(1963. [16] G.W. Cox, Ethol. Ecol. Evol4, 130(1990.

[2] R. H. Mac Arthur and E. O. WilsonThe Theory of Island [17] J. Felsenstein, EvolutiofLawrence, Kan$.35, 124 (1981J).
Biography(Princeton University Press, Princeton, NJ, 1967 [18] J. Maynard Smith, Am. NatLl00, 637 (1966.

[3] J. Sauer, Geogr. Re®9, 582 (1969. [19] B. Balkau and M.W. Feldman, Genetit&7, 229 (1973.
[4] F.S. Gilbert, J. Biogeogi7, 209 (1980. [20] M.R. Servedio, EvolutioriLawrence, Kang.54, 21 (2000.
[5] J.H. Brown, Am. Nat105, 467 (1971). [21] R. Burger and M. Lynch, EvolutiotiLawrence, Kan$.49, 151
[6] T.H. Hamilton, R.H. Barth, Jr., and |. Rubinoff, Proc. Natl. (1995.
Acad. Sci. U.S.A52, 132(1964. [22] M. Mezard, G. Parisi, and M. Virasor&pin-Glass Theory and
[7] F. Vuilleumier, Am. Nat.104, 373(1970. Beyond(World Scientific, Singapore, 1987
[8] P.J. Darlington, Ecol. Monogd.3, 37 (1943. [23] V. Dotsenko,The Theory of Spin Glasses and Neural Networks
[9] F.W. Preston, Ecology3, 185(1962. (World Scientific, Singapore, 1994
[10] K.P. Johnson, F.R. Adler, and J.L. Cherry, Evolution [24]J. S. Langer, ifAn Introduction to the Kinetics of First-Order
(Lawrence, Kang.54, 387 (2000. Phase Transitionin Solids Far from Equilibriumedited by C.
[11] R. Patrick, Proc. Natl. Acad. Sci. U.S.A8, 1335(1967). Godrehe (Cambridge University Press, Cambridge, 1991
[12] J. Cairns, M.L. Dahlberg, K.L. Dickson, N. Smith, and W.T. [25] M. N. Barber, inFinite Size Scalingin Phase Transition and
Waller, Am. Nat.103 439(1969. Critical Phenomenaedited by C. Domb and J. L. Lebowitz
[13] D.S. Simberloff and E.O. Wilson, Ecolody0, 278 (1969. (Academic Press, London, 1973/0l. 8, pp. 145-226.
[14] A. Have, Oikos50, 218 (1987). [26] W. Kinzel, Z. Phys. B: Condens. Matté0, 205 (1983.

041907-9



