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Disorder-induced genetic divergence: A Monte Carlo study
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We present a Monte Carlo simulation of a system composed of several populations, each living in a possibly
different habitat. We show the influence of landscape disorder on the genetic pool of finite populations. We
demonstrate that a strongly disordered environment generates an increase of the genetic distance between the
populations on identical island. The distance becomes permanent for infinitely long times. On the contrary,
landscapes with weak disorder offer only a temporarily allelic divergence which vanishes in the long time
limit. Similarities between these phenomena and the well-known first-order phase transitions in the thermody-
namics are analyzed.
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I. INTRODUCTION

Island problems play an important role in understand
biological evolution. Actually, various questions related
adaptation, reproduction, biological transmission, and nat
selection can be studied using island concepts. Usually,
takes into account that an island is in contact with the ma
land. The underlying dynamics of colonization, migratio
and extinction lead to a biological equilibrium depending
various control parameters, e.g., the island size and the
tance to the mainland@1–5#. The predictions of such model
have been verified for a wide range of taxa including bi
@6,7#, insects@8#, and plants@9#. The decisive contributions
to the stabilization of the biological equilibrium arise fro
the interplay between colonization, migration, and extinct
@10#. The importance of these dynamical factors has b
confirmed in several experimental systems@11–14#.

Obviously, the biological equilibrium is not a real equilib
rium but a stationary state in the sense of a statistical in
pretation. This can be verified by an artificial interruption
the colonization and migration currents. Such a change
responds to a transition from a canonical system~which is in
contact with a thermal bath, i.e., the mainland! to a microca-
nonical system~which is completely isolated!. The dynamics
of the evolution are different in the two cases, in contras
an equilibrium system, where the dynamics are essent
the same with the exception of possible boundary effe
Also a partial change of the influx currents changes the e
lution, e.g., in absence of further colonization, species div
sity dynamics on islands are controlled only by extinction,
with mammals on Great Basin mountains@5#. Furthermore,
the case of a complete isolation of the islands will lead
speciation between the island and the mainland@15# and also
between islands in an archipelago@16#.

Both island-island models and mainland-island mod
are used also for studies of premating isolation@17–19#.
Here, the boundary conditions emerging from speciation
vicariance and peripheral isolation correspond to a symm
ric and one way migration, respectively@20#.

In this paper we shall discuss another question: wha
the influence of the island landscape~i.e, living conditions!
on the speciation? It can be assumed that the formatio
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new species is the result of a complicated interaction
tween the modification of the genotypes due to mutatio
and the natural selection. The appearance of mutations
pure biological property, which is only weakly related to th
local environment. On the other hand, the environment
vors certain phenotypes which have a higher survival chan
Consider now a large territory which can be decompo
into several smaller ones, with possibly different living co
ditions. If the differences are small the subpopulations oc
pying the territories evolve in a coherent manner. Differe
territories may lead to different evolutionary patterns. A h
mogeneous environment leads to a systematic drift of
genetic composition, but the effects of a heterogeneous
vironment may be locally different. Hence, a heterogene
landscape represents a further random quantity apart f
the above mentioned mutations.

We analyze the evolution of populations on complete i
lated islands, i.e., both the island-mainland and the isla
island contacts will be interrupted after the initial coloniz
tion. A realistic example is the occupation of similar islan
which are temporary within easy reach over landbridges. T
immigrated populations are separated after sinking of
bridges. In consideration of the initial question we assu
that all islands have identical random landscapes and
initial distributions of the islands are also identical. We sh
study two problems. In one, the islands are identical but
genetic pools of the colonists are different and in the sec
one also the habitats are different.

We demonstrate, on the base of Monte Carlo~MC! simu-
lation, that for strongly disordered environments an incre
of the genetic distance between the populations on diffe
islands occurs which becomes permanent also for infi
long times. Landscapes that do not differ much will gener
only a temporarily allelic divergence which vanishes in t
long time limit.

II. MODEL

How can we model the biological evolution of species
terms of a Monte Carlo simulation? The first problem is t
definition of the habitat. The general shape of the island
irrelevant, but the area is important because it determines
©2002 The American Physical Society07-1
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maximum number of inhabitants~the so-called carrying ca
pacity of the environment!. Each island consists of territo
ries, and each territory can be occupied at the most by
animal of the population. Therefore, we map the islands o
square lattice of sizeL. Each lattice cell corresponds now
a territory and the total number of territories per island
N5L2.

A. Numerical rules

The outward appearance of an animal is characterized
a set of properties which are defined by the animal’s phe
type. The phenotype of an animal in thei th territory is de-
scribed by aG dimensional vectorF i5$w i

1 ,w i
2 , . . . ,w i

G%.
Each component of this vector corresponds to a prope
which is eitherw i

a5T ~true! or not w i
a5F ~false!. Further-

more,w i
a5T may correspond to an advantageous prope

Such a property becomes dominant in the course of the
logical transmission.

To quantify the reproduction of animals, a genotype
assigned to each individual. The genotype of an anima
position i consists of two sequencesRi ,1 and Ri ,2 each of
lengthG. An element of a sequence can be either true~T! or
false (F). The phenotype of the animal follows from bo
sequences using the logicalOR operationw i

a5Ri ,1
a ~Ri ,2

a ,
i.e., w i

a is true if and only if at least one ofRi ,1
a andRi ,2

a is
true. This rule represents the dominance ofw i

a5T against
w i

a5F. The reproduction and therefore the biological tran
mission takes place due to simplified genetic principles.
the first step two individuals at the positionsi and j are
chosen randomly. These animals are denoted as parents
distanceu i 2 j u on the square lattice between both pare
should not exceed the maximum distancer max. The genetic
sequences of the parents must now be prepared for repro
tion. Therefore, the genotype sequences are split into
subsequences of lengthm and G2m, respectively, i.e., we
obtain (Ri ,1Ri ,2)→(@Ri ,1

m Ri ,1
G2m#,@Ri ,2

m Ri ,2
G2m#). Here the

length m is chosen randomly between 0 andG. These sub-
sequences are recombined to two new sequences~gametes!
R̃i ,15@Ri ,1

m Ri ,2
G2m# and R̃i ,25@Ri ,2

m Ri ,1
G2m#. One of these new

sequences is chosen randomly and combined with a ga
prepared by a similar procedure on the base of the geno
of the other parent. These two gametes form the genotyp
an offspring. This procedure is commonly called recombi
tion. If more than one offspring is created, the whole pro
dure is repeated again. The maximum number of offsprin
n0, but we have to consider that a new animal has to fin
vacant territory. Therefore, only if a vacancy exists in a
gion of radiusr max around the average parent position, t
offspring has a chance of survival.

The natural selection of animals is determined by the p
notype. The local character of a territoryi may be defined by
the environment vectorSi5$s i

1 ,s i
2 , . . . ,s i

G% ~with s i
a5T

ands i
b5F, respectively!, which defines the optimal prope

ties for survival of the animal which has occupied this ter
tory. The product of a component of the phenotype vectorF i
with a component of the local environment vectorSi is de-
fined using the logical procedureXOR. ~This procedure does
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not have a mathematical standard symbol, but is someti
denoted as~.)

^w i
aus i

a&5 f ~w i
a~s i

a!,

with f ~T!51 and f ~F !521.

Therefore, the fitness of an animal is given byAi5(1
1^F i uSi&)/2 with the scalar product ^F i uSi&
5G21( i 51

G ^w i
aus i

a&. Obviously, the fitness is restricted b
0<Ai<1. Fitness and the actual life timet i of an animal
determine the state of the animal. As in many biologic
models~see e.g.,@21#! we assume that the rate of survival
given by an exponential distribution function, i.e., the chan
of survival of an individual is defined by

Pi5expH 2b
t i

Ai
J .

b21 can be interpreted as the averaged age of the anima
an individual dies, the corresponding territory becomes
cant and can be occupied by a new animal.

B. Preparation of island landscapes and initial populations

Now we turn back to the original problem. We assum
that the genetic pool of the initial colonists has been form
on the mainland by a certain phenotype, namelyF0

5$T,T, . . . ,T%. This phenotype corresponds to the best e
vironment vectorS05$T,T, . . . ,T% which may be relevant
for the mainland. Furthermore, we have to take into acco
that the islands are identical, but the landscapes of the isla
deviate from the optimum environment vectorS0 by random
perturbations. We consider two special cases. On one h
we have spatially homogeneous landscapes, i.e., the prop
vectors of all territories are equivalentS15S25 . . . SN

ÞS0. Therefore, we obtainf (s i
a)5^ f (sa)&, where the av-

erage is performed over all territories. The functionf maps
logical observables on numerical quantities,f (T)51 and
f (F)521, as explained above. On the other hand, we h
to deal with completely heterogeneous landscapes, i.e.,
territories characterized by different property vectors. The
fore, we use two parameters for characterizing the two ty
of disorder of the landscapes:

D05
1

G (
a51

G

^@ f ~sa!2^ f ~sa!&#2& ~1!

and D̄5
1

G (
a51

G F ^ f ~sa!&2
1

G (
a51

G

^ f ~sa!&G2

. ~2!

We obtainD050 in the case of a pure homogenous disord
whereas the second quantity converges asymptotically
zero for a pure heterogeneous disorder, limN→`D̄50. For a
parametrization of the disorder we use the following pro
dure. We start from theG-dimensional reference vectorS0

5$T,T, . . . ,T% and change randomly a fraction ofmG com-
ponentsT→F. The obtained vectorS8 is now used as pro-
7-2
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visional property vector of each territory, i.e.,Si85S8. With-
out further changes, the vectorSi8 defines a completely
homogeneous landscape. To obtain a heterogeneous
scape, we change again with the probabilityk, each compo-
nent of the vectorsSi8 , independently of the logical characte
of the components, i.e.,T→F and F→T. The result is a
random set of property vectorsSi , which are used to de
scribe the landscape of the islands. Hence, we obtain

D054k~12k! and D̄54m~12m!~122k!2.

The genetic structure of the population is characterized
the 2N genotypesRi ,1 and Ri ,2 . We require that the initial
sequences of the colonists are completely randomly dis
uted, but the initial distributions of characteristics of all i
lands are identical.

C. Numerical simulations

In the MC simulations we compare the time evolution
100 pairs of identical islands of sizeN540340. Each indi-
vidual is characterized by its genotype of lengthG520,
hence it has two gene sequences of 20 components. In
eral, these arbitrary settings differ from reality, but the m
messages of the simulations are also valid for longer
quences and for a large number of territories. Furtherm
we choose the radiusr max55 and the maximum number o
offspring n053.

After generation of the initial distribution, the originall
identical populations diverge due to the random effects in
biological transmission, the life time, and the occupation
vacant territories~genetic drift!. The combination of biologi-
cal transmission and natural selection emphasizes a ce
phenotype. This phenotype is well defined in the case
vanishing disorder: individuals withF5$T,T, . . . ,T% have
supplanted all other individuals after a sufficiently long ev
lution time. Thus, the divergence of the genetic distan
shows a crossover to a convergence and at sufficiently
times we find a vanishingly small difference.

The situation becomes more complicated in the case
disordered island landscapes. Here, it can be expected
the divergence of the genetic distance becomes finite als
sufficiently long times, in spite of identical landscapes a
identical initial distributions due to genetic drift and random
ness introduced by genetic shuffling in th process of reco
bination.

We use the following quantity for the characterization
the difference between the phenotypes at both islands
given island pair:

q ik~ t !5
1

G (
a51

G

@^ f ~wa!~ t !& ( i )2^ f ~wa!~ t !& (k)#
2.

The indicesi andk indicate the number of the island. Obv
ously, this quantity depends on the actual landscape of
islands. Therefore, we have to average over all possible
alizations of the landscape disorder, defined by the ab
introduced parametersm and k. This ensemble average
marked by an overline. Thus we obtain the following me
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sure for the mean square genetic distance between the p
lations on two islands with disordered landscapes:

dQ~ t !5
1

G (
a51

G

@^ f ~wa!~ t !& (1)2^ f ~wa!~ t !& (2)#
2. ~3!

Another quantity is the so-called overlap function

Qoverlap~ t !5
1

G (
a51

G

^ f ~wa!~ t !& (1)^ f ~wa!~ t !& (2), ~4!

which describes similarity of the respective phenotypes
should be remarked, that this quantity contains similar inf
mation as the Edwards–Anderson order parameter@22,23#
which describes the thermodynamic similarity between n
ergodic spin glass states@23#. Obviously, there is an interest
ing analogy between the biological evolution of isolat
populations and the relaxation of spin glasses into a sta
stationary state. This similarity will be analyzed in detail
the discussion.

Furthermore, we determine the mean misfit of adaptat

M (1)~ t !5
1

2G (
a51

G F (
k51

2

^ f ~wa!~ t !& (k)22^ f ~sa!&G
5

1

2G (
a51

G

(
k51

2

^ f ~wa!~ t !& (k)

2~122m!~122k! ~5!

and the mean square misfit of adaptation

M (2)~ t !5
1

2G H (
a51

G

@^ f ~wa!~ t !& (1)
2 1^ f ~wa!~ t !& (2)

2 #

22 (
a51

G

^ f ~sa!&2J , ~6!

which is related to~3! and ~4! via

M (2)~ t !5
1

2
dQ~ t !1Qoverlap~ t !2~122k!2. ~7!

III. DISCUSSION

First, we analyze the adaptation of the populations to
landscape of the islands. Therefore, we study the quant
M (1)(t) and M (2)(t). The initial mean misfit of adaptation
can be determined immediately, because^ f (wa)(0)&51/2 is
valid for all populations. Hence, we obtainM (1)(0)521/2
12m12k24mk. The mean misfit of adaptationM (1)(t)
converges for long times to another asymptotic value, wh
depends also on the parametersk andm defining the disorder
of the island landscape. The misfit vanishes in the case
vanishing local disorder at the islands (k50), i.e., the re-
maining phenotype shows an optimal adaptation to the isl
landscape. This phenomenon can be observed for glob
disordered islands, i.e., fork50 and 1>m>0. It should be
remarked, that this statement is also valid fork51, because
the above mentioned construction changes the characte
7-3
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FIG. 1. M (1)(t) as a function
of evolution timet for the global
disorder parameterm50 and vari-
ous local disorder parametersk
50,0.1,0.2, . . . ,0.9. The arrow
shows in the direction of increas
ing k. The dotted line correspond
to k50.5.
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all properties in all territories. We may therefore say tha
weak disorder is related tok→0 and k→1, whereas a
strong disorder occurs fork51/2. Another is the situation
for nonvanishing local disorder. Obviously, a finite misfit r
mains after an infinitely long evolution time also, which ca
not be eliminated by the action of the natural selection,
Figs. @1,2#. The surprising result arises fork51/2. The final
mean misfit of adaptationM (1)(`) increases with increasin
k for k,1/2 and then follows an abrupt drop atk51/2, see
Fig. 3. Finally, the misfit approaches again the value 0
k→1. The jump atk51/2 indicates a behavior similar to
first-order phase transition@24# induced by the static loca
disorder of the island landscape.

A characteristic slowing down of the relaxation from th
04190
a

-
e

r

initial value M (1)(0) to the final value occurs fork51/2.
Here, we expect a decay from the initial valueM (1)(0)
51/2 to M (1)(`)50. This statement is correct if we realiz
the average, over all possible initial distributions of the gen
types and over all disordered landscapes correspondin
k51/2 and a fixed value ofm. But if we consider only one
special landscape withk51/2 and fixedm and one initial
configuration then we arrive at a nonvanishing value
M (1)(`). If we repeat the numerical procedure with anoth
landscape characterized again by the same disorder pa
etersk51/2 andm or with another initial configuration, we
obtain another value forM (1)(`). The quantityM (1)(`) ap-
proaches zero, not until we perform the average over a la
set of landscapes and initial configurations. This is the r
s

-
s

FIG. 2. M (1)(t) as a function
of evolution timet for the global
disorder parameterm50.8 and
various local disorder parameter
k50,0.1,0.2, . . . ,0.9. The arrow
shows in the direction of increas
ing k. The dotted line correspond
to k50.5.
7-4
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FIG. 3. M (1)(tmax) as a func-
tion of the local disorder param
eter k (m50). The maximum
simulation timetmax is sufficiently
large, so thatM (1)(tmax).M(1)(t
→`). The step atk50.5 indicates
a phase transition.
is
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son, that the numerically determined value ofM (1)(t→`)
shows a small deviation from the expected resultM (1)(`)
50 due to the finite number of numerical realization. Th
mismatch disappears with increasing number of conside
landscapes and initial distributions of genotypes. We c
clude, thatM (1)(`) is not a self-averaging quantity at lea
close tok51/2. Far from this region, each landscape w
fixed k and m produces the same value ofM (1)(`) apart
from some very rare events.

We reduce the misfit of adaptation by mapping@M (1)(t)
2M (1)(tmax)#/@M

(1)(0)2M(1)(tmax)#→M(1)(t) with the maxi-
mum simulation timetmax. Figure 4 shows that the reduce
quantity can be described very well by an exponential de
exp$2t/t(m)%. The relaxation timet(m) shows only a weak
04190
d
-

y

dependence on the disorder parameterm.
The origin of the misfit of adaptation becomes more cle

after a discussion of the mean square misfitM (2)(t). The
initial value of this quantity is given byM (2)(0)523/4
14k24k2, i.e., it is independent from the global disord
parameterm. This behavior reflects also a symmetry defin
by the construction of the disorder. Configurations related
the local,k, and global,m, disorder parameters are equiv
lent to configurations related to the pair (12k,12m). Be-
causeM (2)(0) is independent fromm, it must be invariant
against a changek→12k, see also Figs.@5, 6#. Also the
final valuesM (2)(`) do not depend onm. Obviously, one
and only one phenotype dominates a given island afte
sufficiently long evolution time. This means that the avera
s

FIG. 4. Half logarithmic
plot of the reduced misfit
of adaption for k50.5 and
various order parametersm
50,0.05,0.1, . . . ,0.95,1.0. The
decay of all these functions show
an exponential behavior.
7-5
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FIG. 5. M (2)(t) as a function
of evolution timet for the global
disorder parameterm50 and vari-
ous local disorder parametersk
50,0.1,0.2, . . . ,0.9. The dashed
curves correspond tok,0.5, the
full curves representk.0.5. The
dotted line corresponds tok
50.5.
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of each property approaches the value^ f (wa)(`)&561.
Consequently, we obtainM (2)(`)512(122k)254k(1
2k), see Fig. 7. It seems, that these propertieswa of the
phenotype become dominant, which are favored by the
land landscape: if the majority of territories has a landsc
property Si

a5T ~or F), then the corresponding phenotyp
property of all animals becomesw i

a5T ~or F) in the long
time limit. The only critical situation occurs fork51/2, i.e.,
for the case when half of the territories have the prope
Si

a5T and the other half hasSi
a5F. Here, the future evolu-

tion is open and a behavior similar to a phase transition
be expected again.

We analyze now the order parameterdQ(t) and
Qoverlap(t) for a better understanding of the biological evol
tion at a strong disorder, especially for the casek51/2. Both
order parameters compare the evolution at two identica
lands and they are modifications of similar parameters
scribing the behavior of spin glasses. These glasses are
04190
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modynamic systems, which have no equilibrium below
critical temperature. In other words, a spin glass shows m
than one thermodynamic ground state in opposition to
usual thermodynamic system which has only one grou
state. After cooling down of a spin glass, the influence of
random thermodynamic fluctuations and the initial con
tions determines the final ground state. But if the system
reached one of these ground states, a change to an
ground state is forbidden below the critical temperature a
for a macroscopic~infinite large! system. The thermody
namic behavior of a spin glass can be characterized by
Edwards-Anderson order parameter, which compares
replicas, i.e., two identical thermodynamical systems. If b
replicas are in the same ground state, the order param
becomes 1, otherwise it has a smaller value. This situatio
comparable with the biological evolution at two identic
islands. If the order parameterQoverlap(t→`) becomes 1,
the phenotypes at both island are identical. In other wo
s

FIG. 6. M (2)(t) as a function
of evolution timet for the global
disorder parameterm50.35 and
various local disorder parameter
k50,0.1,0.2, . . . ,0.9. The dashed
curves correspond tok,0.5, the
full curves representk.0.5. The
dotted line corresponds tok
50.5.
7-6
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FIG. 7. M (2)(tmax) as a func-
tion of the local disorder param
eter k (m50). The maximum
simulation timetmax is sufficiently
large, so thatM (2)(tmax).M(2)(t
→`).
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there is a complete overlap between the populations at
islands. In case of an incomplete overlapQoverlap(t→`)
,1, the final populations are different. An analogous beh
ior shows the order parameterdQ(t), which vanishes for a
complete overlap, whereas a finite value indicates a dif
ence between the phenotypes of the island population
similar function, measuring the overlap of a given and sto
patterns, has been introduced in the theory of neural
works, see e.g., Ref.@26#.

Figure 8 shows the time evolution ofQoverlap(t) for m
50. The order parameter approaches 1 for weak disor
i.e., for small values as well as for large values ofk. Devia-
tions can be observed only for a small interval close tok
'0.5 with a maximum fork51/2, i.e. for the strong disor
04190
th

-

r-
A
d
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r,

der regime. The existence of an incomplete overlap not o
for k51/2 is a finite size effect@25#. Note, that with increas-
ing island size the interval withQoverlap(t→`)Þ1 decreases
and it remains only a singularity atk51/2 for infinite large
islands.

A similar behavior shows the order paramet
dQ(t) which vanishes for weak disorder in the lon
time limit t→`. A relatively sharp peakdQ(t→`)Þ0
occurs only fork'1/2, see Fig. 9. Hence, a weak disord
is related to a biological identity of the populations at diffe
ent islands. But we observe a splitting of the biological ev
lution for k51/2 ~and in case of a finite size effect als
for a small interval aroundk51/2). This allelic divergence
is a typical feature of the speciation induced by the disor
-

r
e

FIG. 8. Qoverlap(t) as a func-
tion of evolution time t for the
global disorder parameterm50
and various local disorder param
eters k50,0.1,0.2, . . . ,0.9. The
arrows show in the direction of in-
creasingk. A serious deviation of
Qoverlap(`).Qoverlap(tmax) from
the value 1 occurs only fork
50.5. The smaller deviations fo
k50.4 and 0.6 seems to be finit
size effects.
7-7
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FIG. 9. dQ(t) as a function of
evolution timet for the global dis-
order parameterm50.35 and vari-
ous local disorder parametersk
50,0.2, . . . ,0.8 and0.5. A finite
value of dQ(`).dQ(tmax) can
be obtained only for k50.5
60.2. It can be assumed again
that all finite values ofdQ(tmax),
except the value fork50.5, are
finite size effects. The linear be
havior between t5101 and t
5103 indicates a intermediate al
gebraic law in the time evolution
of dQ(t).
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of the landscape. The singularities atk51/2 in both
order parameters suggest again a behavior similar to a
order phase transition.

Finally, we present a phase diagram which reflects
above discussed behavior, see Fig. 10. Only a small s
along thek51/2 line offers a considerable finite value
dQ(t→`). The finite width of the strip is related to th
above mentioned finite size effect.
04190
st-

e
ip

The presented numerical Monte Carlo study demonstr
the influence of disordered landscapes on the genetic di
gence of species. Obviously, the disorder becomes releva
the whole system island-population shows undecided c
figurations, i.e., the future evolution and the final populati
are determined by small random events. This situation ta
place for k51/2. Here, the initial population can reach
least two different global phenotypes. The question, wh
final population will be realized, is controlled by a rando
e
-

FIG. 10. Phase diagram for th
dependence of the final order pa
rameterdQ(tmax) on the disorder
parametersk and m. The small
strip along the 0.4,k,0.6 repre-
sents valuesdQ(tmax).0.25.
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procedure and cannot be defined by a deterministic law.
However, this global analysis generates new questio

which should be analyzed in subsequent studies. Espec
we assume that in the first step the dominance of some
sible final phenotypes can be observed in small regions
the island. These regions increase during the biological e
lution and at the cost of other regions. Finally, only one
the possible phenotypes dominates the whole island. T
tl.

n

T.

04190
s,
lly,
s-

of
o-
f
is

behavior is similar to the dynamics of a first-order pha
transition. Small domains of a new phase increase in com
tition with other phases. Finally, only one phase, the
called macrophase, occupies the whole system. Hence
arrive at the question, whether this aspect of biological e
lution can be described by the same well-known theories
thermodynamic systems~spinodal separation, nucleation
and growth! or not.
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